

MULTIPLEX MOLECULAR PANELS FOR VIRAL DIAGNOSTIC TESTING: PROS AND CONS

D. Jane Hata, Ph.D., D(ABMM) Associate Director of Microbiology Mayo Clinic Florida

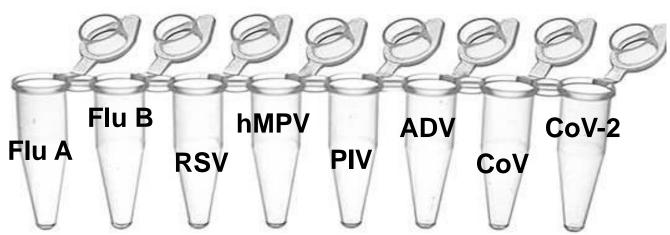
February 8, 2025

DISCLOSURES

- I will be discussing specific molecular test products
 - Emphasis of US FDA-approved products
 - -Not an endorsement!
- Molecular panel testing for blood cultures or synovial fluid will not be discussed
 - Viruses not included on these panels
- Seegene Inc. (speaker fees)
- Roche Molecular Diagnostics (study)

LEARNING OBJECTIVES

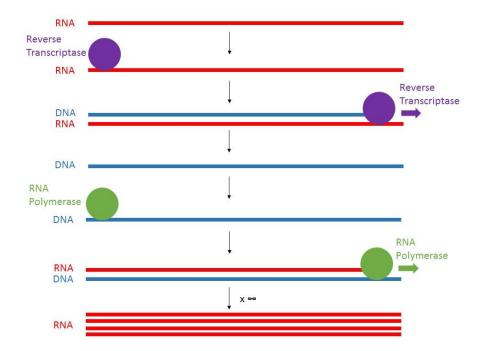
- Understand the technologies utilized in molecular syndromic panel testing for viral pathogens
- Review the clinical significance of viral pathogens in respiratory, gastrointestinal and central nervous systems infections
- Understand the advantages and disadvantages of molecular panel testing for viral pathogens

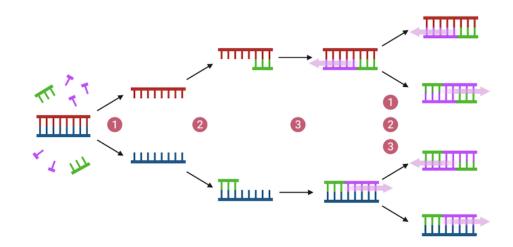


HOW DO MOLECULAR PANELS WORK?

©2025 Mayo Foundation for Medical Education and Research | slide-4

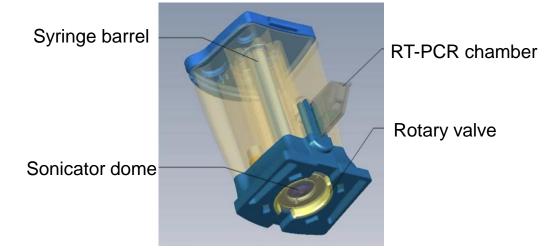
DEFINITIONS

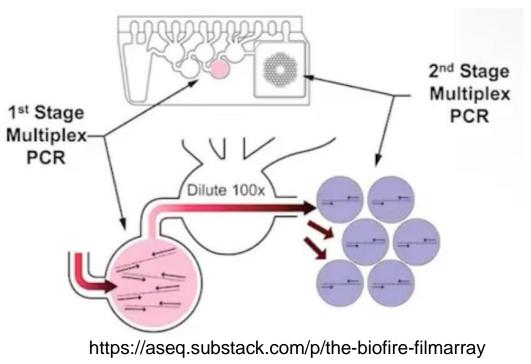

- Multiplex Molecular Testing
 - Simultaneous detection and identification of multiple biomarkers (targets) in a single test
 - Sensitivity and specificity may be affected
- Syndromic Testing Panels
 - Multiplex testing based on body system or disease presentation
 - Multiple individual tests packaged in a single system
 - "Respiratory panel"
 - "Gastrointestinal panel"
 - "Meningitis/Encephalitis panel"



HOW DOES IT WORK?

- Goal is to provide multiplex molecular amplification in a single panel format
 - PCR based DNA Amplification
 - Microarray based
 - Transcription-mediated amplification RNA amplification
 - Ease of use by automation
- FDA-approved
 - Moderate to high-complexity testing
 - Specific sample types
 - Specific collection devices
 - Other than these parameters....classified as FDA modified or *laboratory developed tests*


https://en.wikipedia.org/wiki/Transcription-mediated_amplification


www.biorender.com/template/polymerase-chain-reaction-pcr

AMPLIFICATION METHODS

- Specimen is injected into panel strip/cartridge
- Chemical lysis to release nucleic acids from organism
- Cepheid
 - Multiplex PCR in a single cartridge
 - Smaller panel
- Biofire
 - Large-volume multiplex PCR
 - Single-plex nested PCR
 - Multiple reactions in a larger panel

https://slideplayer.com/slide/5910092/

A WIDE VARIETY OF PLATFORMS

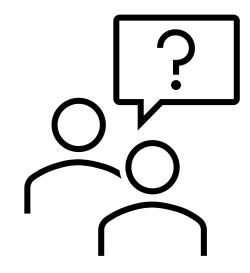
- Panels vary in terms of available targets
- Large panels and small panels
- Sample to answer

©2025 Mayo Foundation for Medical Education and Research | slide-8

FALSE POSITIVE RESULTS

- Detection of residual nucleic acid
 - Prior infection
- Contamination of reagents with non-viable organism
- Contamination of sample during collection
- Contamination of sample during specimen processing
- Non-specific amplification exceeding baseline
- Error in laboratory resulting
- May result in unnecessary therapy or incorrect therapy
 - Antibiotics for viral infections

	?
0	
ſ	


FALSE NEGATIVE RESULTS

- Insufficient amount of specimen
- Amplification inhibition
 - Enzymes, hemoglobin, poor extraction quality
- Amplification below the lower level of detection of assay
- Error in laboratory resulting
- May result in no therapy or exposures to pathogen

	?
\mathbf{O}	Ň
' ($\tilde{}$

OTHER CONSIDERATIONS FOR PANEL IMPLEMENTATION HIGH VOLUME PLATFORM VS. LOW VOLUME PLATFORM

- Patient population
 - Inpatient or outpatient?
 - High-risk patients?
 - Immunocompromised
 - Pediatric vs. adult?
 - US only Will insurance cover the test?
- Specimen collection and stability Logistics
 - Specific collection device
 - Transport to testing laboratory?
 - Transportation conditions (temperature)

RESPIRATORY VIRAL PATHOGEN PANEL TESTING

SPECIAL REPORT

ADLM Guidance Document on Laboratory Diagnosis of Respiratory Viruses

Gregory J. Berry (), ^a Tulip A. Jhaveri (), ^b Paige M.K. Larkin, ^c Heba Mostafa, ^d and N. Esther Babady^{e,*}

GJ Berry, et al. Journal of Applied Lab. Med., Volume 9, Issue 3, May 2024, Pages 599–628.

RESPIRATORY VIRUSES

- Influenza A
 - Subtypes H1, H3; H5
- Influenza B
- Human Metapneumovirus
 - Adults and children
- Respiratory syncytial virus (RSV)
 - Subtypes A, B
 - Pediatric and older adults
- Parainfluenza
 - Subtypes 1-4
 - Reinfection common
- Rhinovirus/Enterovirus
 - Most common in circulation

- Human Coronavirus
 - HKU-1
 - OC 43
 - NL 63
 - 229-E
 - SARS CoV-2 (COVID)
 - MERS less common
- Adenovirus
 - URI's ,pharyngoconjunctival fever
- Bocavirus
 - Controversial status as pathogen
 - Persistence in LRT

MULTIPLEX RESPIRATORY PANELS

- Syndromic panels" for URI
- 3 22 targets: bacteria, viruses
- Nucleic acid amplification (NAAT) based,
 - 20 minutes 4 hour run time
 - Specific instruments often required
 - All reagents contained in a cartridge or strip
 - Expensive
 - Random access or batch testing
 - Can detect "residual" nucleic acid
- Fast TAT can help target therapy
 - Influenza, CoV-2
- Pneumonia Panels for LRT
 - Atypical bacterial pathogens

PERFORMANCE COMPARISON OF RESPIRATORY PANELS (N=210)

Viral Target	% Overall Agreement				Mean % Positive Predictive Agreement			Mean % Negative Predictive Agreement		
	FA	RPP	TAC	FA		RPP	TAC	FA	RPP	TAC
Adenovirus	96.2	97.6	98.1							
Influenza A	100	100	99.5							
Influenza B	100	100	100							
Parainfluenza (1 – 4)	98.6	99.0	98.1	95.8	3	91.6	93.4	96.9	99.1	99.3
HMPV	99.0	98.1	99.0							
Rhino/Entero	92.8	95.2	96.2	F	-Δ·Ι	BioFire R	Pespirator	v Panel		
CoV (not Co-V2)	97.1	97.1	99.0	 FA: BioFire Respiratory Panel RPP: Luminex XTag Respiratory Panel TAC: Life Technologies TaqMan Array Card 						
RSV	98.6	98.1	98.6							u

Banerjee D,et al. J Clin Virol. 2022 Nov;156:105274.

ASSAY ISSUES THAT IMPACT TEST PERFORMANCE

- Changes in target sequence may reduce sensitivity
 - Influenza A Matrix gene mutations
 - Test developers must use "contemporary" isolates
 - SARS CoV-2 "Alpha" variant
- Emergence of new agents with enhanced virulence
 - SARS CoV-2
- Reagent shortages secondary to epidemics/pandemics
 - SARS CoV-2
 - Influenza
- Quality of specimen collection
 - NP? Nasal? Throat?

Stellrecht KA.. J Clin Microbiol. 2018 Feb 22;56(3):e01531-17.

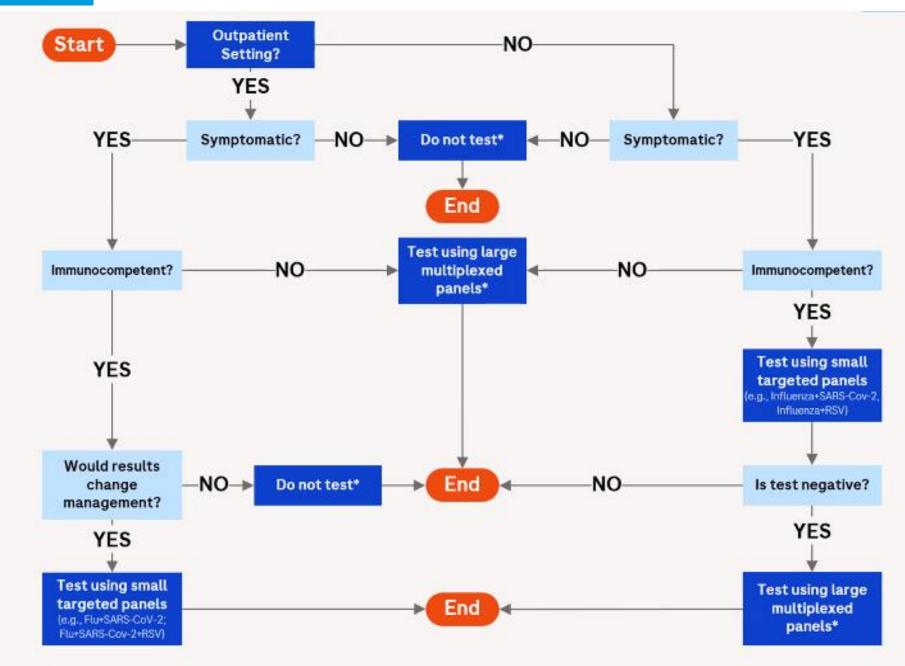
DO IMPLEMENTATION OF RESPIRATORY PANELS AFFECT PATIENT CARE?

- Mixed results across multiple studies
 - Antibiotic Usage
 - Only difference noted in patients NOT receiving antibiotics before panel result
 - Length of hospital stay No difference
- Diagnosis of influenza may lead to shorter hospital stay, fewer antibiotics, less diagnostic imaging
 - No impact when a non-influenza positive result was noted
- Clear guidance is needed!

Graf EH, Pancholi P.. Curr Infect Dis Rep. 2020 Feb 6;22(2):5.

WHEN IS A RESPIRATORY PANEL APPROPRIATE?

- High pretest probability of respiratory viral infection
- When results will guide management:
 - Use of antivirals
 - Infection control measures
 - Outbreak surveillance
- Hospitalized patients
- Immunocompromised hosts
- Pediatric patients with severe disease or underlying conditions



WHEN IS A RESPIRATORY PANEL NOT APPROPRIATE?

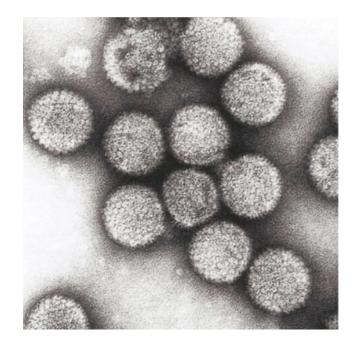
- Testing of asymptomatic patients
 - "Screening" tests
- Testing in low-prevalence situations
 - False-positive results may occur
- Mild symptoms in otherwise healthy individuals (outpatient settings)
 - Consider small panels or targeted testing for Influenza or SARS CoV-2
- Assist providers with appropriate test selection to guide diagnostic stewardship

GJ Berry, et al. Journal of Applied Lab. Med., Volume 9, Issue 3, May 2024, Pages 599–628.

RESPIRATORY PANELS AND PATIENT MANAGEMENT

GJ Berry, et al. Journal of Applied Lab. Med., Volume 9, Issue 3, May 2024, Pages 599–628.

3 GASTROINTESTINAL (GI) VIRAL PATHOGEN PANEL TESTING

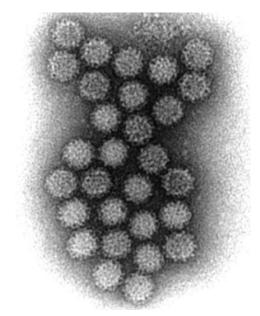

©2025 Mayo Foundation for Medical Education and Research | slide-21

GASTROINTESTINAL (GI) VIRAL PATHOGENS

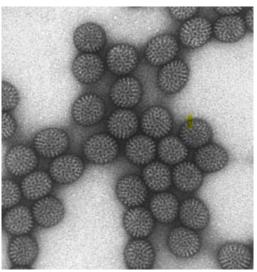
- Rapid onset
 - Nausea, vomiting, non-bloody diarrhea, fever, malaise
- Self-limiting
 - 48 72 hours
- No antiviral treatment
 - Supportive care only
- Outbreaks associated with food, water, fecal-oral transmission, droplets, human gatherings
- Environmental persistence

GI VIRUSES - DNA

- Adenovirus (Adenoviridae)
 - Over 100 subtypes, most of which result in GI disease
 - Types 40,41
 - 2% 15% of pediatric diarrhea cases
 - 94% seroprevalence in adults (US)
 - Less association with large-scale outbreaks

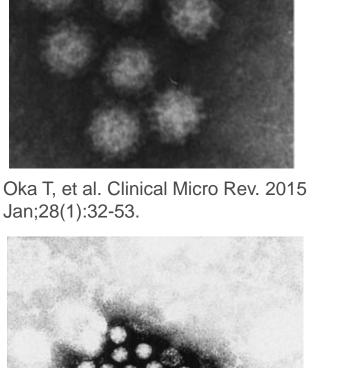


Schnell, M et al. 2001. Jour Am Soc of Gene Therapy; 3: 708-22.


Powell EA, et al. J Clin Virol. 2023 Dec;169:105612.

GI VIRUSES - RNA

- Norovirus (Caliciviridae)
 - 10 genogroups (GI GX); GII.4 most common
 - High viral loads; 10^{5 –} 10⁸ copies/gram in stool
 - Greater significance in certain populations
 - HSCT, SOT Severe disease and persistent viral shedding
- Rotavirus (Reoviridae)
 - Pediatric pathogen (< 5 y.o)
 - Seasonal epidemics January June
 - Oral vaccine is available


https://step1.medbullets.com/ microbiology/121540/norovirus

https://www.cdc.gov/rotavirus/about/photos.html ©2025 Mayo Foundation for Medical Education and Research | slide-24

GI VIRUSES - RNA

- Sapovirus (Caliciviridae)
 - "Star of David" morphology
 - Less severe disease than norovirus
 - Fecal shedding of virus 1-4 weeks
 - May be emerging cause of GI disease in children < 5 y.o.
- Astrovirus (Astroviridae)
 - Star like morphology
 - Incidence peaks at 12-17 months of age; 2-9% of pediatric diarrhea cases
 - Resistant to inactivation

MULTIPLEX GI MOLECULAR PANELS

- "Syndromic panels"
- Up to 22 targets: bacteria, parasites, viruses included
- Nucleic acid amplification (NAAT) based,
 - < 4 hour run time</p>
 - Specific instruments often required
 - All reagents contained in a cartridge or strip
 - Expensive
 - Random access or batch testing
 - Can detect "residual" nucleic acid
- Rafila et al study
 - 54.2% of pathogens detected with molecular method
 - 18.1% detected with conventional culture

Hata DJ et al. J Appl Lab Med. 2023 Nov 2;8(6):1148-1159 Rafila, A., et al. Clinical Microbiology and Infection, 2015; 21(8);719-728.

PERFORMANCE COMPARISON OF GI PANELS

Viral Target	% Clinical Accuracy			% Analytical Sensitivity			% Analytical Specificity		
	FA	GPP	TAC	FA	GPP	TAC	FA	GPP	TAC
Adenovirus 40/41	97.7	94.7	95.3	97.4	57.9	68.4	97.7	100.0	99.2
Astrovirus	98.7		98.0	97.4		92.3	98.9		98.9
Norovirus	98.0	96.7	97.7	87.8	78.0	87.8	99.6	99.6	99.2
Rotavirus	96.3	99.3	98.3	100.0	95.8	89.6	95.6	100.0	100.0
Sapovirus	99.3		69.7	97.6		75.6	99.6		100.0

FA: BioFire Film Array GPP: Luminex xTAG GI TAC: Life TechnologiesTaqMan Array Card

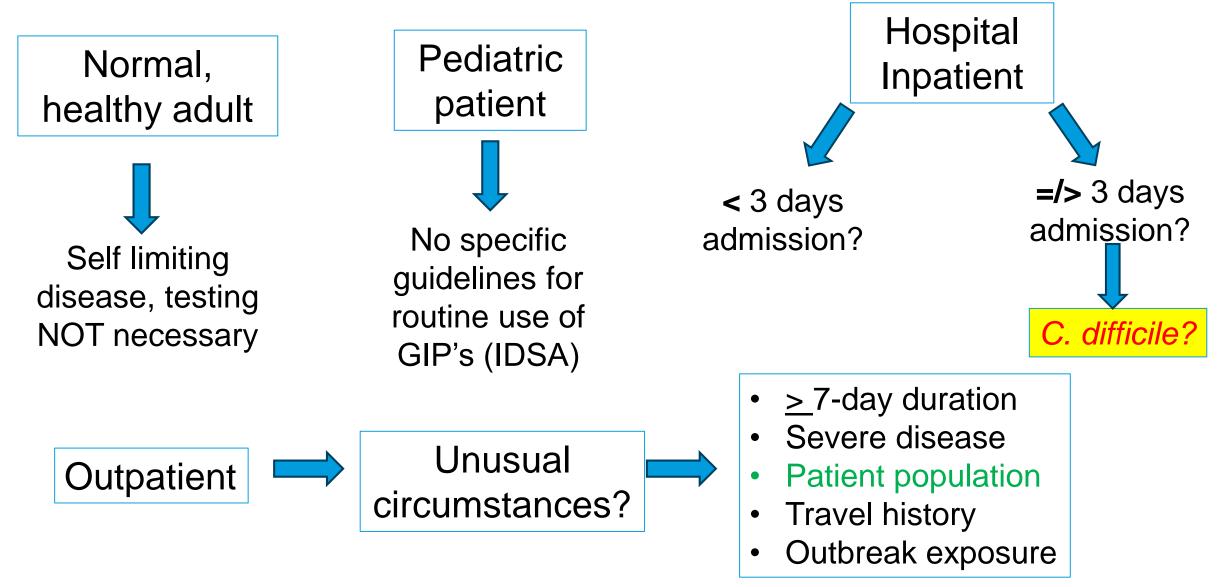
Adapted from: Chhabra P, et al. J Clin Virol. 2017 Oct;95:66-71.

ASSAY ISSUES THAT IMPACT TESTING

- False positives due to material contamination
 - BioFire GIP Norovirus
- Lower sensitivity for some viruses
 - Adenovirus
- Only most common serotypes included on panels
 - Norovirus G II.4
 - Adenovirus types 40, 41

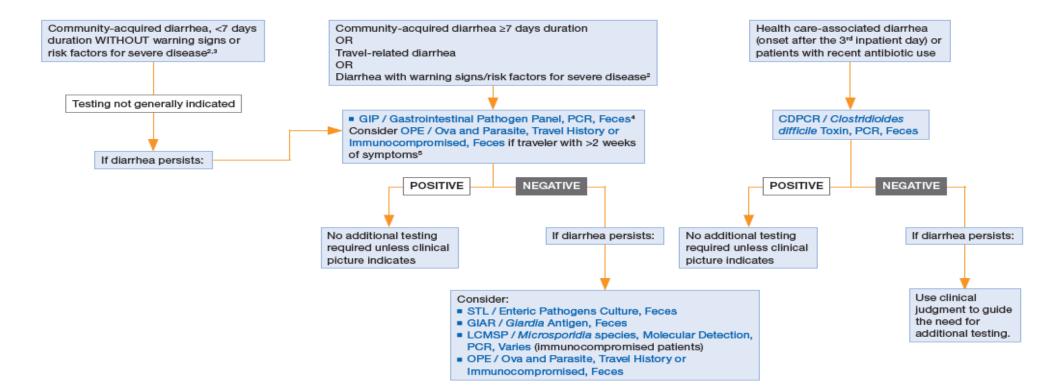
WHEN IS A GI VIRAL PANEL APPROPRIATE?

- High-risk patient/severe disease
 - Immunosuppression?
 - Correlate use with clinical presentation of patient
- Rule out of bacterial pathogens
 - Reduce antibiotic use
- Reduce ancillary testing for diagnosis
 - Esoteric cultures
 - MRI, invasive testing
- Faster diagnosis for outbreak situations



WHEN IS A GI VIRAL PANEL NOT APPROPRIATE

- Likelihood of detection of residual nucleic acid
 - May mask true etiology of disease
- Use as "Test of cure"
- Patients hospitalized <u>></u> 72 hours
 Consider *C. difficile* instead
- Not recommended for normally healthy patients
 - Short duration of illness and supportive care



GI PANELS AND PATIENT MANAGEMENT

Laboratory Testing for Infectious Causes of Diarrhea¹

¹ This panel should NOT be used for chronic diarrhea.

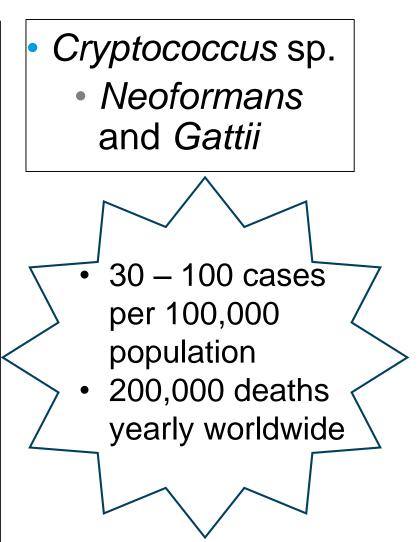
² Warning signs and risk factors for severe disease include fever, bloody diarrhea, dysentery, severe abdominal pain, dehydration, hospitalization, and immunocompromised state.

³ During the summer, consider ordering STFRP / Shiga Toxin, Molecular Detection, PCR, Feces on children with diarrhea even if they don't have frankly bloody diarrhea, are not toxic-appearing, and diarrhea has been present <7 days.

⁴ GI Pathogen Panel tests for common bacterial, viral and parasitic causes of diarrhea

⁵ Submit 3 stool collected on separate days for maximum sensitivity

Note: In outbreak scenarios with a known organism, consider ordering a specific test for that organism (CYCL / Cyclospora Stain, Feces; CRYPS / Cryptosporidium Antigen, Feces; GIAR / Giardia Antigen, Feces; bacterial stool culture)



CNS VIRAL PATHOGEN PANEL TESTING

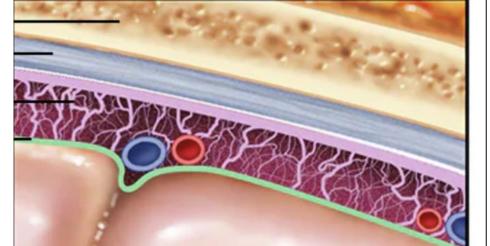
©2025 Mayo Foundation for Medical Education and Research | slide-33

CNS PATHOGEN PANEL TARGETS

- Escherichia coli K1
- Haemophilus influenzae
- Listeria monocytogenes
- Neisseria meningitidis
- GBS, GAS
- Streptococcus pneumoniae
- Mycoplasma pneumoniae

- CMV
- Enterovirus
- HSV-1
- HSV-2

•


- Human herpesvirus 6 (HHV-6)
- Parechovirus (enterovirus)
- Varicella zoster virus (VZV)

Boers SA et al. Eur J Clin Microbiol Infect Dis. 2024 Mar;43(3):511-516. Akaishi T, et al. Acute Med Surg. 2023 Dec 29;11(1):e920.

CNS PATHOGEN PANEL TARGETS

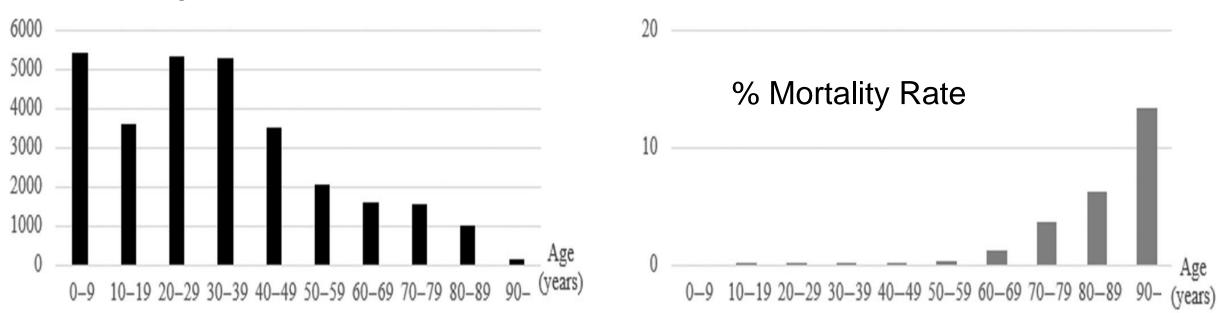
Meningitis:

- Inflammation of the meninges
- 4-30 cases/100,000
- Enterovirus

Encephalitis:

- Inflammation of brain parenchyma
- 3-7 cases/100,000
- HSV-1, HSV-2

- CMV
- Enterovirus
- HSV-1
- HSV-2


•

- Human herpesvirus 6 (HHV-6)
- Parechovirus (enterovirus)
- Varicella zoster virus (VZV)

Boers SA et al. Eur J Clin Microbiol Infect Dis. 2024 Mar;43(3):511-516. Akaishi T, et al. Acute Med Surg. 2023 Dec 29;11(1):e920.

CNS VIRAL PATHOGENS

Viral meningitis cases Japan 2016 - 2022, N = 29,486

CMV

- Human herpesvirus 6 (HHV-6)
- Enterovirus
- HSV-1
- HSV-2

- Parechovirus
- Varicella zoster virus (VZV)

Boers SA et al. Eur J Clin Microbiol Infect Dis. 2024 Mar;43(3):511-516 Akaishi T, et al. Acute Med Surg. 2023 Dec 29;11(1):e920.

PERFORMANCE OF CNS PANEL – BIOFIRE ME

- Biofire ME Panel (BioMerieux Inc.)
 - FDA approved
 - 14 Targets
- 1 clinical site
- Adult and pediatric
- N = 161
- Compared to targeted PCR

Virus	PPA (95% CI)	
Enterovirus	95.4 (83.7, 99.6)	
HSV-1	73.1 (53.7, 86.5)	
HSV-2	87.3 (75.7, 94.0)	
CMV	100 (38.3, 100)	
Parechovirus	Not tested	
HHV-6	100 (51.1, 100)	
VZV	100 (86.1, 100)	
All viruses	94.8%	

Liesman RM et al. 2018. J Clin Microbiol 56:10.1128/jcm.01927-17.

PERFORMANCE OF CNS PANELS – QIASTAT DX ME

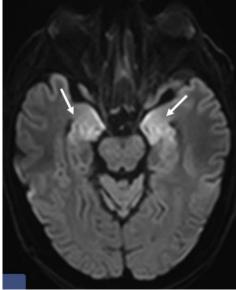
QIAstat-Dx ME panel (Quagen Inc.)

- FDA approved 11/4/2024
- 15 Targets
- 3 clinical sites
- Adult and pediatric
- N = 585
- Compared to Biofire ME

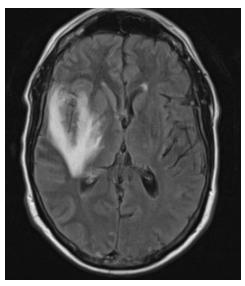
Virus	PPA (95% CI)	NPA
Enterovirus	77.8 (45.3–93.7)	99.8 (99.0–100.0)
HSV-1	100.0 (83.9–100.0)	100.0 (99,3–100.0)
HSV-2	91.3 (73.2–97.6)	99.6 (98.7–99.9)
Parechovirus	No data	100.0 (99.3–100.0)
HHV-6	90.0 (59.6–98.2)	99.7 (98.7–99.9)
VZV	94.6 (85.2–98.1)	99.6 (98.6–99.9) 99.8 (99.6–99.9)
All viruses	93.2 (87.1–96.5)	99.8 (99.6–99.9)

* CMV not included on this panel

Sundelin T et al. 2023.J Clin Microbiol 61:e00426-23.


ANALYTICAL ISSUES THAT IMPACT CNS TESTING

- False negative HSV-1, HSV-2 early in course of infection
- False positive S. pneumoniae
- False negative *Cryptococcus*
- Vector borne viruses not included on current panels
 - WNV
 - St. Louis Encephalitis
- HIV not included


HUMAN HERPES VIRUS 6 – HHV 6

- HHV-6 testing Detected but may not be clinically significant
- Chromosomal integration of HHV-6
- Subclinical reactivation of latent virus
- August 2017 July 2017: N= 793
 - 60 (7.6%) positive for <a>> 1 target
 - 15 positive for HHV-6 (25%)
- Clinical relevance of HHV-6 unclear
- HSCT recipients at greatest risk
 Distinct MRI changes
- Clinical judgement needed to judge significance
 - Provide interpretive comments on result report

Green DA. Clin Infect Dis. 2018 Sep 14;67(7):1125-1128. Marcelis S, et al. J Belg Soc Radiol. 2022 Oct 10;106(1):93.

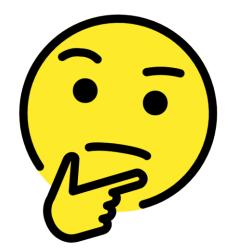
HHV-6 encephalitis

HSV-1 encephalitis https://radiopaedia.org/articles/herpessimplex-encephalitis?lang=us

WHEN IS USE OF A CNS PANEL APPROPRIATE?

- Rapid diagnosis of encephalitis and meningitis
- Aids in antibiotic stewardship and length of hospital stay
- Culture negative meningitis/encephalitis
 - Availability of viral culture?
- Currently no set guidance for how or if testing should be limited as a stewardship approach,

|--|


WHEN IS USE OF A CNS PANEL NOT APPROPRIATE?

2017 IDSA practice guidelines:

- "Nucleic acid amplification tests, such as PCR, on CSF may both increase the ability to identify a pathogen and decrease the time to making a specific diagnosis (weak, low)"
- No current guidelines for use of panels
 - Survey of 335 pediatric providers across 40 US states
 - 75% did not have guidance on appropriate usage of panels
 - 76% did not have guidance on interpretation of results of panels
- Testing in the absence of relevant clinical signs of meningitis/encephalitis

Tunkel AR, et al.Clin Infect Dis. 2017 Mar 15;64(6):e34-e65. Rajbhandari P et al, BMC Infect Dis. 2022 Oct 31;22(1):811

THINGS TO CONSIDER.....

WHY IS THIS SO COMPLICATED?

- Tests are expensive and may not be readily available
 - Reserve use for patients who truly need them
- Limits on insurance reimbursement (US)
- Ease of use has led rapid adoption and potential overuse
- All analytes performed and reported
 - No flexibility to break up panels
 - NEW: Liaison Plex system allows for view and pay only for targets of interest

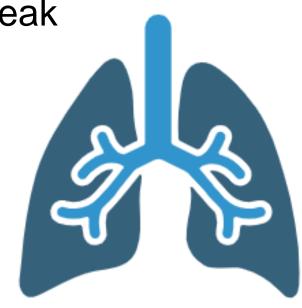
Graf EH, Pancholi P.. Curr Infect Dis Rep. 2020 Feb 6;22(2):5.

MOLECULAR MULTIPLEX POINT/COUNTERPOINT ADVANTAGES

- Syndromic approach useful when diagnosis cannot be made based on symptoms
- High analytical sensitivity and specificity
- Rapid time to result
- Superior to culture or antigen detection
- Must be a clear understanding of appropriate use and interpretation of test panel

MOLECULAR MULTIPLEX POINT/COUNTERPOINT DISADVANTAGES

- Panels not justified for rare pathogens, specific patient populations, or when clinical syndromes can be delineated
- Tests are not perfect
 - Understand the performance characteristics of each analyte to appreciate the positive and negative predictive value of the test
- Laboratory commitment to maintain test
 - Assay and software updates
 - Technologist competency
 - QC
 - Regulatory requirements


IMPLEMENTATION OF MOLECULAR PANEL TESTING LABORATORY CONSIDERATIONS

- Appropriate use of test
 - Consider patient population
- Clinical need
 - Collaboration with clinical services
 - What do they need?
- Specific requests
 - Support for specific clinical services

- Ability to acquire instrumentation
 - Cost
 - Laboratory capacity
 - Availability of technical support
- Cost benefit to laboratory
 - Revenue generation
 - Cost avoidance
- Workflow!
 - Test upon receipt or batch?
 - Shift based or 24/7?
 - Competency of personnel

SUMMARY – RESPIRATORY PANEL TESTING

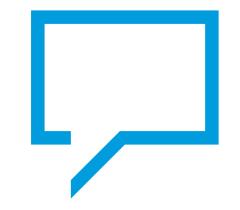
- 3 22 targets: bacteria, viruses
- Good overall performance; > 90% accuracy
- Rapid TAT can help target therapy and outbreak management
 - Influenza, SARS CoV-2
 - May not affect antibiotic usage
- Should not be used for asymptomatic patients/screening
- Quality of specimen very important
- Changes in target sequences could affect sensitivity and specificity of test

SUMMARY – GI PANEL TESTING

- Detection of viruses with overlapping symptoms
- Ability to detect GI viruses that cannot be cultured
- Good overall performance ; >90% accuracy
 - Adenovirus
 - Norovirus
- Useful in high-risk patients; severe disease
 - Diarrhea \geq 7 days
- Not recommended for normally healthy patients
 - Self-limiting
 - Supportive care only

SUMMARY – CNS PANEL TESTING

- Rapid diagnosis of encephalitis/meningitis
 - Guide use of antiviral agents
- High negative predictive value of assays
 - "Rule-out" test
- Be aware of accuracy issues:
 - HSV- 1, HSV-2
 - Enterovirus
 - HHV-6
 - Cryptococcus, S. pneumoniae



THANK YOU!

- My FCIDCM support system
- Pan American Society for Clinical Virology (PASCV)
 - Meghan Starolis PhD
 - Eleanor Powell PhD
- MCF Molecular Virology Laboratory

QUESTIONS & ANSWERS

