

First Coast ID/CM Symposium

A 148 - ---

VCUHealth

32nd Annual Meeting

February 7-8, 2025 Hyatt Regency, Jacksonville Riverfront, Jacksonville, FL

Microbiology's Most Challenging Culture: The Diabetic Foot Wound

Christopher Doern, PhD D(ABMM) Director of Microbiology Professor of Pathology VCU Health System, Richmond, VA

1/29/2025

25th Annual First Coast Infectious Disease/Clinical Microbiology Symposium February 2-3, 2018

Stretch Break 2:45 pm


3:00 pm

Moderator: Noel Gomez, MMSc, UF Health Jacksonville, Jacksonville, FL Antimicrobial Resistance and Susceptibility Testing: Preamble to the Ramblings of an Older Microbiologist

The Clinical Relevance of Antimicrobial Susceptibility Testing: Ramblings of a Very Old Clinical Microbiologist

Christopher Doern, PhD Virginia Commonwealth University Medical Center Richmond, VA Gary Doern, PhD Professor Emeritus University of Iowa College of Medicine

1

Conflicts of Interest

Advisory activities – Quidel, Karius, Roche, Cepheid, GeneCapture Speaker's bureau - Shionogi

Background on Diabetes

Scope of the problem

- Over 500 million people globally suffering from diabetes
- 37 million in the US
- Estimated that 20-30% of DM patients will develop a chronic non-healing wound in their life
- Foot ulcers often require amputation

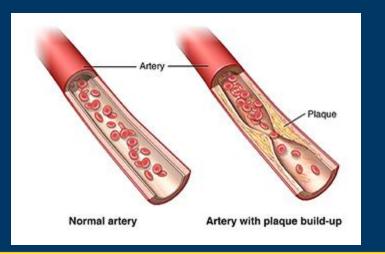
Diabetes and Insulin

- Essential hormone for regulating blood sugar levels
- Two types Type 1 and Type 2

Type 1 – Autoimmune disease

- Pancreas does not make insulin because the body's immune system attacks the islet cells that make insulin.
 - Genetic factors
 - Immunologic dysregulation
 - Environmental triggers

Type 2 - Acquired


- Pancreas does not make enough insulin and/or the body doesn't regulate insulin properly
 - Caused by insulin resistance when muscles, fat, and liver don't respond as they should to insulin
 - Genetic factors
 - Obesity
 - Inactivity
 - Eating highly processed, high carbohydrate foods

Pathophysiology of Wound Healing

Hyperglycemia

- Contributes to the development of atherosclerosis.
 - Prevents circulating nutrients from reaching wound and impairs healing

https://www.hopkinsmedicine.org/health/conditions-and-diseases/atherosclerosis

 Hyperglycemia may contribute to dysfunction of endothelial cells via pressure induced vasodilation (normally protective)

<u>Neuropathy</u>

- Autonomic
- Impaired sweat gland function \rightarrow dry cracked skin
- Motor

•

• Increases pressure on plantar surface of foot and impairs healing

<u>Hypoxia</u>

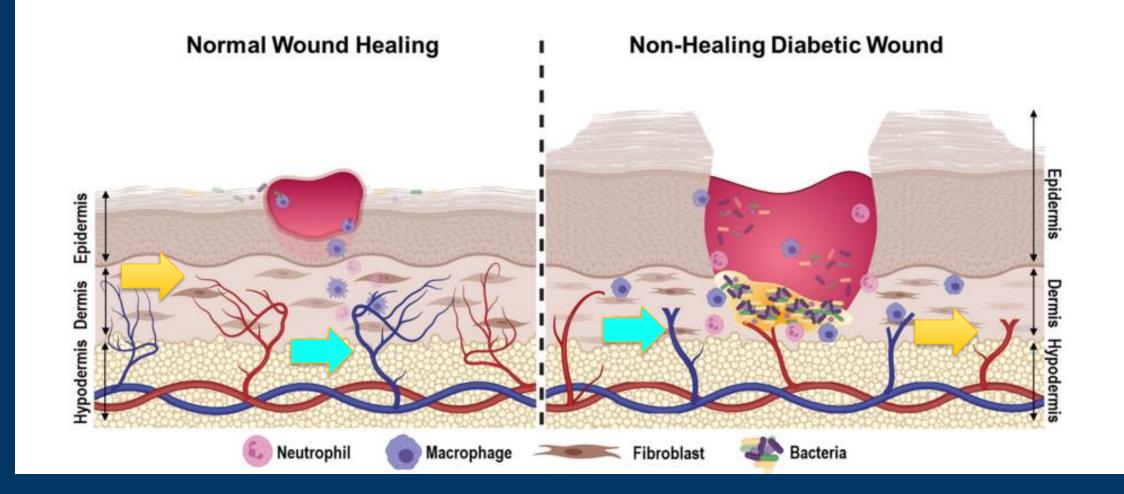
- Due to poor circulation
- Hypoxic wound environment leads to poor healing

Peripheral artery disease

• Poor circulation leads to increased risk of amputation

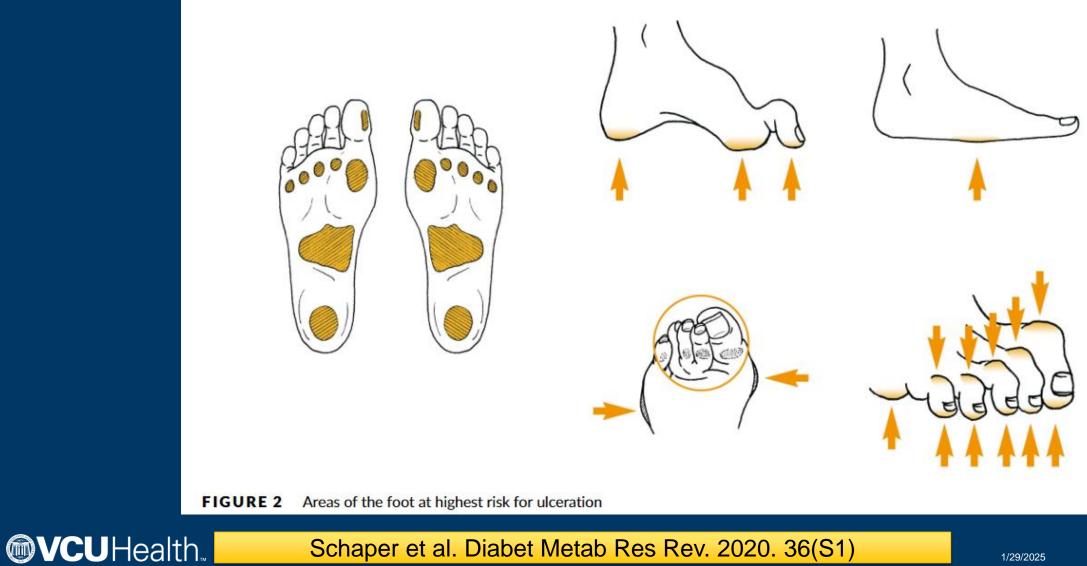
Antimicrobial Peptides

- Healthy skin produces antimicrobial peptides that fight infection
- This is impaired in diabetic wounds


Bacterial Diversity

- Diabetic skin more likely to be colonized with...
 - S. aureus, Pseudomonas, Enterobacterales

VCUHealth.


Pathophysiology of Wound Healing

VCUHealth.

Burgess et al. Medicina. 2021, 57,1072

Diabetic Foot Ulcers

Diabetic Wound Infections

Ulcers colonized with potential pathogens.

Signs of Infection

Inflammation

- Redness
- Warmth
- Induration
- Pain/tenderness
 <u>Purulent Secretions</u>

VCUHealth.

Challenges

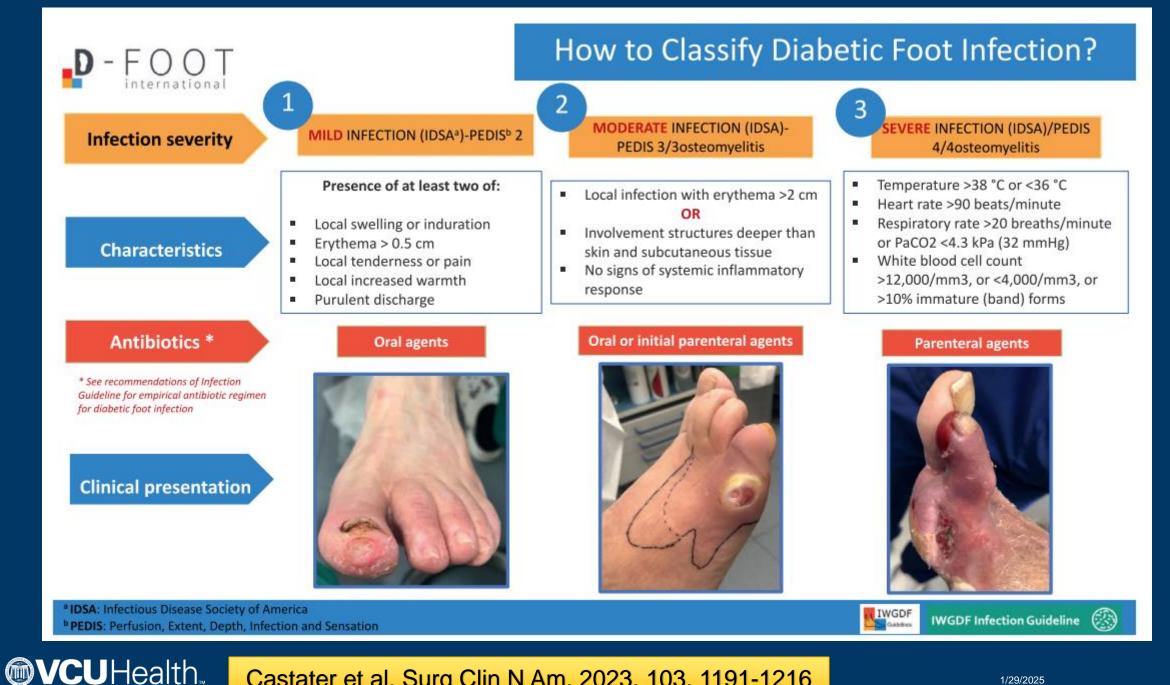

- 1. Symptoms blunted by neuropathy or ischemia
- 2. Systemic symptoms often absent (pain, fever, leukocytosis)
- 3. Particularly challenging in mild or moderate infections

Table 1. The classification system for defining the presence and severity of foot infection in a person with diabetes.^a

Clinical classification of infection, definitions	IWGDF/IDSA classification
No systemic or local symptoms or signs of infection	1/Uninfected
 Infected: At least two of these items are present: Local swelling or induration Erythema >0.5 but <2 cm^b around the wound Local tenderness or pain Local increased warmth Purulent discharge 	2/Mild
And, no other cause of an inflammatory response of the skin (e.g., trauma, gout, acute charcot neuro-arthropathy, fracture, thrombosis, or venous stasis)	
 Infection with no systemic manifestations and involving: Erythema extending ≥2 cm^b from the wound margin, <i>and/or</i> Tissue deeper than skin and subcutaneous tissues (e.g., tendon, muscle, joint, and bone)^c 	3/Moderate
Infection involving bone (osteomyelitis)	Add "(O)"
 Any foot infection with associated systemic manifestations (of the systemic inflammatory response syndrome [SIRS]), as manifested by ≥2 of the following: Temperature, > 38°C or <36°C Heart rate, > 90 beats/min Respiratory rate, > 20 breaths/min, <i>or</i> PaCO2 < 4.3 kPa (32 mmHg) White blood cell count >12,000/mm³, <i>or</i> < 4G/L, <i>or</i> >10% immature (band) forms 	4/Severe
- Infection involving bone (osteomyelitis)	Add "(O)"

Senneville et al. CID. 2023. October

IWGDF/IDSA

Castater et al. Surg Clin N Am. 2023. 103. 1191-1216

Work up of a Diabetic Wound Infection

Laboratory Testing

Only 50% of diabetic patients with deep wound infections have a leukocytosis.

Imaging

- Begins with X-ray
- Fracture, foreign body, osteolytic changes
- MRI and CT can be done
- Diagnose osteomyelitis

What is the role of culture?

From IDSA

In a person with suspected soft tissue DFI, consider a sample for culture to determine the causative microorganisms, preferably by aseptically collecting a tissue specimen (by curettage or biopsy) from the wound. (Conditional; Moderate)

In a person with diabetes for whom there is a suspicion of <u>osteomyelitis</u> of the foot (before or after treatment), <u>bone</u> (rather than soft tissue) samples should be obtained for culture, either intraoperatively or percutaneously. (Conditional; Moderate)

Consider a duration of up to 3 weeks of antibiotic therapy after **minor amputation** for diabetes-related osteomyelitis of the foot and **positive bone margin culture** (Conditional; Low)...

"Since all wounds are colonized (often with potentially pathogenic microorganisms), wound infection cannot be defined using only the results of wound cultures."

Pathogens of Diabetic Wound Infections

DFI Pathogens

Definitions -

Infection – Virulence factors of one or more wound organisms overwhelm host resistance resulting in invasion and replication of the organisms and local tissue damage.

<u>Contamination</u> – Presence of bacteria on the wound surface with no multiplication of bacteria.

<u>Colonization</u> – Replication of organisms on the wound surface without invasion of wound tissue and with no host immune response.

Also...

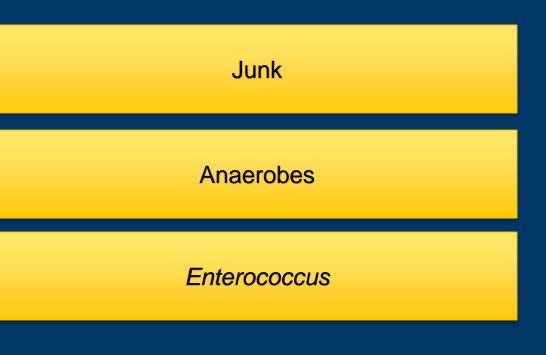
Mere presence of organisms in nonviable tissue, without invasion of viable tissue, does NOT constitute wound infection.

Gardner and Frantz. Biol Res Nurs. 2008; 10(1)

Reference	Severity of Infection	Predominant Pathogens				
Armstrong et al. 1995	Unclear	<i>S. aureus</i> (51%) Anaerobes (7%)				
Diamantolpoulos et al. 1998	Limb-threatening	<i>S. aureus</i> (51%) Anaerobes (21%)				
El-Tahawy. 2000	Unclear	<i>S. aureus</i> (28%) Anaerobes (11%)				
Goldstein et al. 1996	Mild to moderate	<i>S. aureus</i> (76%) Anaerobes (40%)				
Louie et al. 1976	Uninfected to severe	Peptococcus (80%) S. aureus (35%)				
Prabhakar et al. 1981	Gangrenous	Proteus (31%) S. pyogenes (46%)				
Sapico et al. 1984	Scheduled for	Group D Strep (41%)				
Summary						
 S. aureus Anaerobes 						

- Beta-hemolytic streptococci
- Enterococcus??

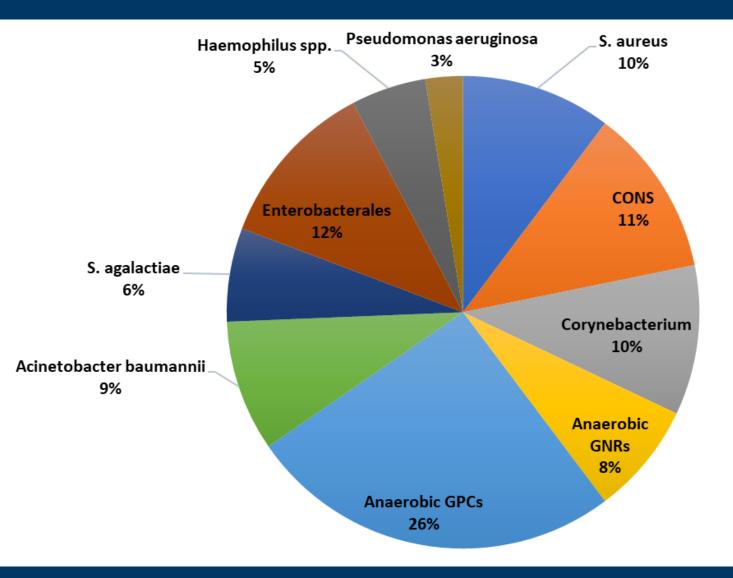
What is missing?


If you had asked me...

Staphylococcus aureus

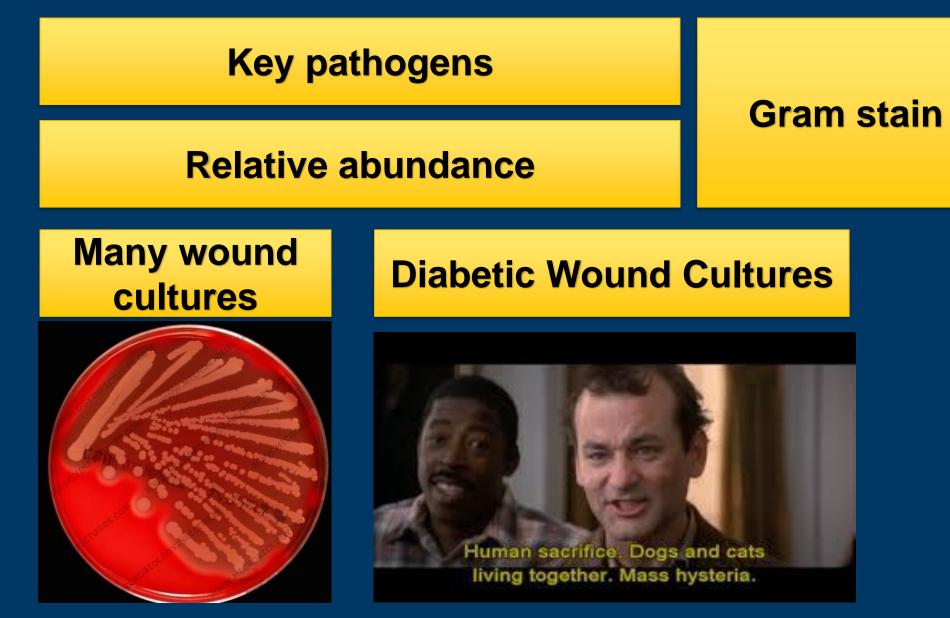
Streptococcus agalactiae

Mixed enteric flora

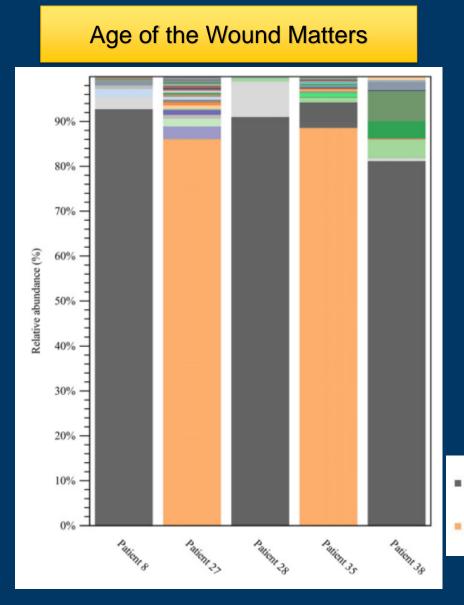

VCUHealth.

Microbiome of the Diabetic Wound

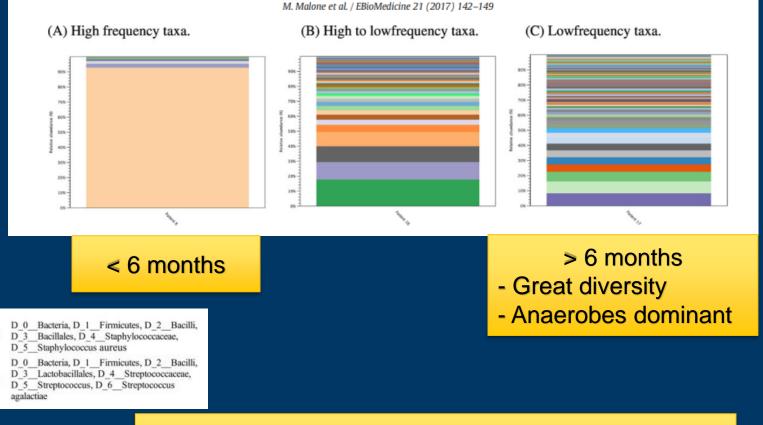
Conducted in England


VCUHealth.

- 39 Newly infected patients (>18 yo)
- Tissue punch biopsy performed
- Prior topical or systemic antibiotics excluded
- Next generation sequencing and qPCR (microbial load) were performed

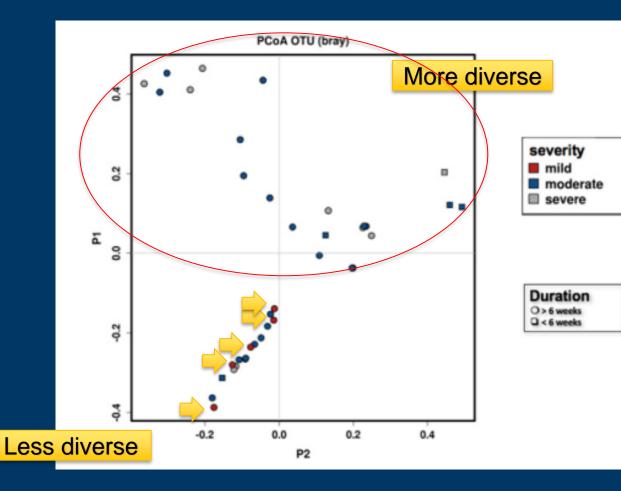

Malone et al. EBioMedicine. 2017. 142-149

What principals do we use to determine significance in a bacterial culture?



VCUHealth.

Interesting Findings from the Microbiome



- < 6 month wounds
 - Dominant growth of single pathogens
 - Little bacterial diversity
 - *Staphylococcus aureus* and GBS dominant pathogens

Malone et al. EBioMedicine. 2017. 142-149

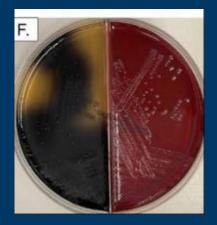
Do pathogens vary by wound severity

VCUHealth.

These data are difficult to interpret

Mild Infection

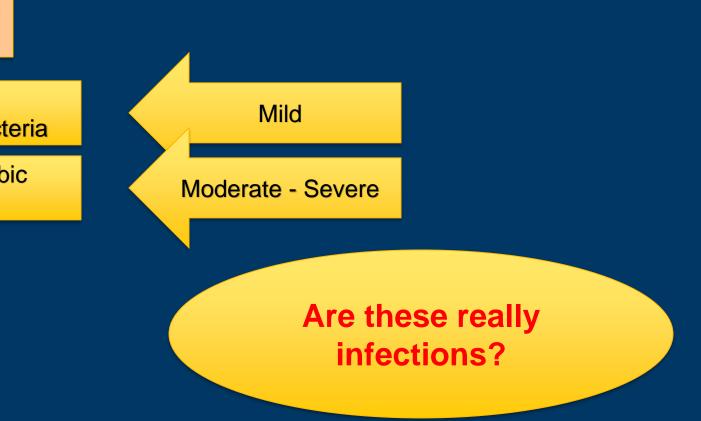
- Low diversity (fewer types of organisms)


Moderate – Severe Infection

- Higher diversity

Anaerobes

- Present across all infections equally


Malone et al. EBioMedicine. 2017. 142-149

What does this mean?

Which culture is more "significant"

Abundant *S. aureus* Rare mixed anaerobic bacteria

Moderate mixed anaerobic bacteria

Microbiology of the Diabetic Foot: Specimens and processing

Preferred

Tissue biopsy from a debrided area Bone biopsy

<u>Suboptimal</u> Superficial swabs

Do not do!!!

Severed limbs and appendages

- Send us biopsy from the clean margin following amputation

Processing of Bone Specimens

- Cover with saline or broth medium
- Vortex for 10 seconds
- Remove vortexed medium
- Use one drop for Gram stain
- Inoculate plates with 1-2 drops
 - Quadrant streaking patter

Alternatively (If viable tissue present)

- Excise tissue and process as you would for a tissue biopsy.

If bone too large to fit in container....

- Avoid if possible
- Contact provider to see if they can assist in excising bone fragments

VCUHealth...

Gram stain Principals

Look for signs of a quality specimen

- Presence of inflammation
- Lack of epithelial cells
- Presence of organisms

Notification of results

• Organisms seen on sterile specimens???

What do we know about the accuracy of the Gram stain?

THE JOURNAL OF TRAUMA Copyright © 1976 by The Williams & Wilkins Co. Vol. 16, No. 2 Printed in U.S.A.

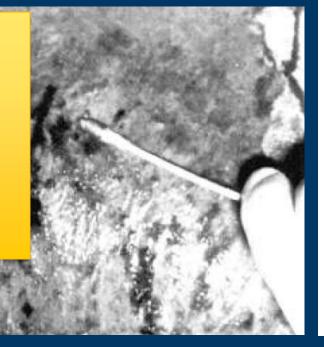
THE QUANTITATIVE SWAB CULTURE AND SMEAR: A QUICK, SIMPLE METHOD FOR DETERMINING THE NUMBER OF VIABLE AEROBIC BACTERIA ON OPEN WOUNDS

NORMAN S. LEVINE, M.D., LT COL, MC, ROBERT B. LINDBERG, PH.D., ARTHUR D. MASON, JR., M.D. and BASIL A. PRUITT, JR., M.D., COLONEL, MC

From the United States Army Institute of Surgical Research, Brooke Army Medical Center, Fort Sam Houston,

Texas

TABLE I


Relationship between the Number of Viable Bacteria Counted and the Visualization of Bacteria on a Gram-Stained Smear of a Wound Swab

Number of Viable Bacteria Counted	Number of Swab Counts in This Range	Number with Visualization of Bacteria on Gram Stained Smear
≥10 ⁸	6	6
1 imes 10 7 to $9.9 imes 10$ 7	1	0
$1 imes 10^{ extsf{6}}$ to $9.9 imes 10^{ extsf{6}}$	4	4
$1 imes 10^{5}$ to $9.9 imes 10^{5}$	2	0
< 10 ⁵	11	0

Conclusions

- Cultured organism quantity correlates with quantity on smear.
- 2. Visualization of organisms implies > 10^5 organisms.

Gram stains in patients with diabetic ulcers

• Tanzania – low resources

What is the utility of using the Gram stain to guide therapy, when culture is not available?

RESULTS

- 118 cultures of tissue biopsies yielded growth
 - 59 (50%) were polymicrobic (80% GNRs)
 - 38 (32%) GNRs alone
 - 20 (17%) GPs alone
- Gram stain predictive in 93% of cultures
 - Gram positives 15/20 (75%)
 - Gram negatives 31/38 (83%)

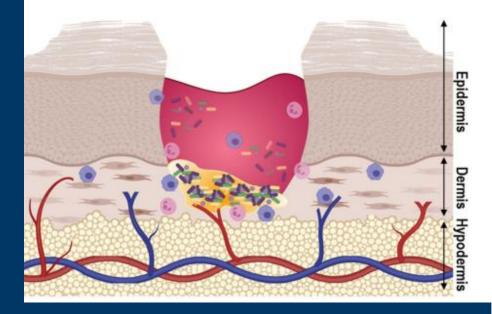
Table 3 Results of Grams stains with the correspondingmatched culture result*

Gram stain result on light microscopy	Growth of Gram-negative microorganisms (single species)	Growth of Gram-positive microorganism (single species)		
Gram-negative bacilli Gram-positive cocci	38 2	0 15		
	ificant by McNemar test dicates the complementar			

@VCUHealth. Abbas et al. Inter Wound Journal. 2012. 9

Treatment of Diabetic Wound Infections

Antibiotic Use in the Diabetic Ulcer


What Antibiotics Are Used? Table 2. Empirical Antibiotic Options for Diabetic Foot Limb threatening Infections³¹ Ampicillin-sulbactam Ticarcillin-clavulanate Non-limb threatening (generally oral outpatient therapy) Piperacillin-tazobactam Cephalosporins (cephalexin, cefadroxil, cefdinir) Ceftazidime + clindamycin Fluoroquinolones (levofloxacin, moxifloxacin) Cefotaxime ± clindamycin Penicillins (dicloxacillin, amoxicillin/clavulanate) Fluoroguinolone + clindamycin Linezolid Antipseudomonal carbapenem (doripenem, imipenemcilistatin, meropenem) Trimethoprim-sulfamethoxazole Fluoroquinolone + vancomycin + metronidazole Doxycycline Linezolid Life threatening Ertapenem Tigecycline Ampicillin-sulbactam + aztreonam Piperacillin-tazobactam + vancomycin Vancomycin + metronidazole + ceftazidime Antipseudomonal carbapenem (doripenem, imipenem-How well do these antibiotics work in cilistatin, meropenem) Fluoroguinolone + vancomycin + metronidazole diabetic patients? Ertapenem Linezolid Tigecycline

VCUHealth

Nicolau and Stein. JAPMA. 2010. 100(1)

Pharmacokinetics of Antibiotic Use in Diabetic Foot Ulcers: Levofloxacin

VCUHealth...

Journal of Antimicrobial Chemotherapy (2004) **54**, 836–839 DOI: 10.1093/jac/dkh412 Advance Access publication 16 September 2004

Tissue and serum levofloxacin concentrations in diabetic foot infection patients

K. Oberdorfer¹*, S. Swoboda², A. Hamann³, U. Baertsch³, K. Kusterer⁴, B. Born⁵, T. Hoppe-Tichy², H. K. Geiss¹ and H. von Baum⁶

METHODS

- 10 outpatients with diabetes and ulcers enrolled.
- All received oral levofloxacin.
- Levofloxacin concentration determined from wound tissue.

Patient Number	Tissue [] mg/kg	MIC Mg/L	Pathogens cleared?	
D3	7.22	0.125	Yes	
D6	2.33	<2.0	Yes	
D7	15.76	<2.0	Yes	
D8	23.23	<2.0	Yes	
D9	15.36	No pathogens	Yes	
D10	2.36	<2.0	Yes	
D11	9.66	0.25	New pathogens with high levo MICs	
D1	7.73	0.25	No	
D2	14.14	2.0	No	
D5	10.02	<2.0	Yes	

Pharmacokinetics of Antibiotic Use in Diabetic Foot Ulcers: **<u>Tigecycline</u>**

METHODS

- 8 Patients with Grade 2 or 3 DFU
- Simultaneous administration of other therapies permitted
- Measured tigecycline in uninfected thigh and wound

TABLE 2. Steady-state pharmacokinetic parameters representing tigecycline concentrations in plasma, wound interstitial fluid, and uninfected thigh interstitial fluid samples^a

				Parameter ^b			
Sample category	C _{max} (µg/ml)	T_{\max} (h)	AUC ₀₋₂₄ (µg · h/ml)	<i>t</i> _{1/2} (h)	CL _{ss} (liters/h/kg)	V _{ss} (liters/kg)	Penetration ^c (%)
Plasma (total) Plasma (free)	0.42 ± 0.11 0.16 ± 0.01	1.13 ± 0.35 1.13 ± 0.35	3.99 ± 0.75 2.65 ± 0.33	9.73 ± 4.62	0.28 ± 0.09	3.95 ± 2.31	
Wound Thigh	0.16 ± 0.06 0.18 ± 0.13	4.38 ± 3.38 3.38 ± 3.54	2.60 ± 0.02 2.60 ± 1.02 2.52 ± 1.15	24.88 ± 28.67 15.96 ± 13.2			$\begin{array}{c} 100.00 \pm 44.78 \\ 98.94 \pm 52.75 \end{array}$

^a Steady-state conditions consisted of a 100-mg loading dose and then 3 to 4 doses of 50 mg twice daily.

^b C_{max} peak concentration; T_{max}, time to reach peak concentration; Cl_____clearance at steady state; V____volume of distribution at steady state. Data are reported as

means \pm standard deviations. *P* values (representing statistical analysis o $t_{1/2}$, 0.437; for percent penetration, 0.966.

^c Percent penetration calculated as follows: AUC_{thigh}/fAUC_{plasma} × 10

Similar conclusions for Omadacycline

Gill et al. JAC. 2022. 77(5)

VCUHealth

Tissue Penetration and Pharmacokinetics of Tigecycline in Diabetic Patients with Chronic Wound Infections Described by Using *In Vivo* Microdialysis[⊽]

Catharine C. Bulik,¹ Dora E. Wiskirchen,¹ Ashley Shepard,² Christina A. Sutherland,¹ Joseph L. Kuti,¹ and David P. Nicolau^{1,3*}

Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut¹; Connecticut Surgical Group, Hartford Hospital, Hartford, Connecticut²; and Division of Infectious Diseases, Hartford Hospital, Hartford, Connecticut³

CONCLUSION

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Dec. 2010, p. 5209-5213

Copyright © 2010, American Society for Microbiology. All Rights Reserved

0066-4804/10/\$12.00 doi:10.1128/AAC.01051-10

Tigecycline penetration into diabetic wounds does not differ from non-wound tissue.

1/29/2025

Treatment and Outcome of DFU

38 patients were treated with outcomes measured

• 19 (49%) failed

Number	Wound Duration	Treatment Failure Rate	Description of Microbiology			
33	> 6 weeks	15 (45%)	Polymicrobial anaerobes			
5	< 6 weeks	4 (80%)	Monomicrobial (Staph and Strep)			
Number	Wound Duration	Treatment Failure Rate	Conclusion			
9	> 6 weeks	4 (44.4%)	Treatment failure	rates are >40%		
25	Not reported	11 (44%)	regardle: - Antibiot			
The presence of correlated with treatment failure what was it?						
NAS JUST <mark>nas</mark>	Streptococcus aga	lactiae Malone	et al. EBioMedicine.	2017. 142-149		
	33 5 Number 9 25	33> 6 weeks5< 6 weeks	AdditionRate33> 6 weeks15 (45%)5< 6 weeks	Alte Microbiology 33 > 6 weeks 15 (45%) Polymicrobial anaerobes 5 < 6 weeks 4 (80%) Monomicrobial (Staph and Strep) Number Wound Duration Treatment Failure Rate Conclu 9 > 6 weeks 4 (44.4%) Treatment failure regardles 25 Not reported 11 (44%) - Antibiot orrelated with treatment failure what was it? Malone et al. EBioMedicine.		

What about empiric therapy?

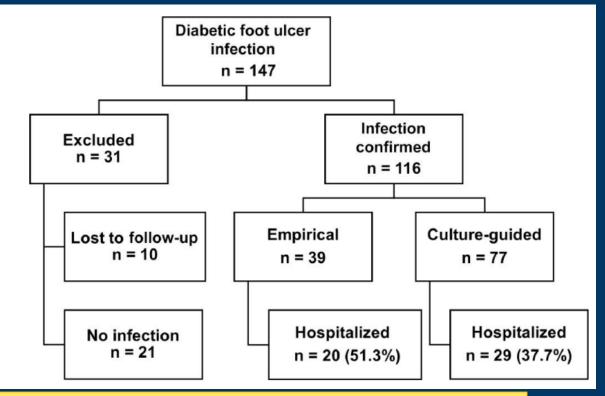
Open Forum Infectious Diseases

MAJOR ARTICLE

Empirical Antibiotic Therapy in Diabetic Foot Ulcer Infection Increases Hospitalization

Brian M. Schmidt,^{1,®} Keith S. Kaye,^{2,®} David G. Armstrong,³ and Rodica Pop-Busui^{1,®}

¹Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Health, Ann Arbor, Michigan, USA, ²Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA, and ³Department of Surgery, Southwestern Academic Limb Salvage Alliance (SALSA), Keck School of Medicine of University of Southern California, Los Angeles, California, USA


116 patients with infected DFUs

- 68% mild
- 26% moderate
- 6% severe

Treatment

- Empiric 39
- Culture guided 77

No demographic differences between these groups

Only noted for mild infections – which is counter intuitive.

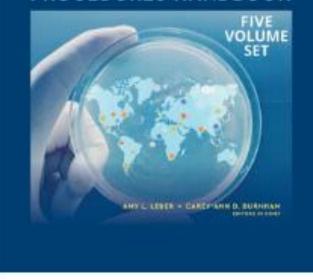
- No difference in amputation or death.
- Could differences be due to uncontrolled variables?

VCUHealth.

Summary of Treatment

- Outcomes in general appear to be poor. ~40% failure rate
- Surgical debridement improves outcome
- Inverse relationship between the microbiology and wound severity
- It appears as though antibiotics do penetrate the diabetic wound environment, but these studies may be flawed
- Empiric treatment *might* be inadequate

What does all this mean for the role of culture?



Culture Work Up

- 4. From invasively collected specimens from normally sterile sites, identify up to <u>three microorganisms</u> according to the criteria in Table 3.12.1-2. Exception, workup all organisms listed as "Any quantity" in Table 3.12.1-2.
- 5. For noninvasively collected, good-quality specimens, with Gram stain evidence of infection (presence of PMNs and/or few epithelial cells), identify up to two microorganisms according to the criteria in Table 3.12.1-2. Exception, work-up all organisms listed as "Any quantity" in Table 3.12.1-2.
- NOTE: Definition: good quality wound specimen PMNs in direct smear or a history of diabetes or immunocompromised condition; Poor-quality wound specimen - moderate or numerous squamous epithelial cells on direct smear or no PMNs.

CLINICAL MICROBIOLOGY PROCEDURES HANDBOOK

FIFTH EDITION

VCUHealth.

How many organisms to work up?

Three organisms from sterile sites

l iterature review

• Two organisms from non-sterile sites

Ma mada it un 💮

	• Literature review	vve made it up 🤤
Aeromonas hydrophila	Rare, Well-defined pathogen	Any growth
C. perfringens	Common pathogen	Any growth
Pasteurella spp.	Rare, Well-defined pathogen	Any growth
Capnocytophaga spp.	Rare, Well-defined pathogen	Any growth
Aracanobacterium haemolyticum	Rare, Well-defined pathogen	Any growth**
Bacillus anthracis	Rare, Well-defined pathogen	Any growth**
Corynebacterium diphtheriae	Rare, Well-defined pathogen	Any growth**
Nocardia spp.	Rare, Well-defined pathogen	Any growth**
Mycoplasma hominis	Rare, Well-defined pathogen	Any growth**
Vibrio vulnificus	Rare, Well-defined pathogen	Any growth**
Clostridium septicum	Rare, Well-defined pathogen	Any growth**
Clostridium novyi	Rare, Well-defined pathogen	Any growth**
Clostridium sordelli	Rare, Well-defined pathogen	Any growth**
Corynebacterium kroppenstedtii	Rare, Well-defined pathogen	Any growth**

۲

** Although any growth of these organisms would be clinically significant, laboratories should not identify all organisms in a wound culture to ensure that these organisms are not missed. As a practical matter, laboratories can assume that if these organisms are disease causing, they will be cultured in predominant quantities (i.e. greater than commensal flora).

Doern et al. Journal of Nonsense. How to make things up out of thin air. 2024. 234(5)

Using Relative Abundance to Guide Work Up

From Table 3.12.2 in CMPH

Coagulase negative staphylococci	Commensal, Potential pathogen	Pure	ID only, AST on request or if hardware associated, report as mixed flora if not significant
Enterococci	Commensal, Potential pathogen	Pure or predominant	ID and AST, report as mixed flora if not significant
Enterobacterales	Commensal, Potential pathogen	Pure or predominant	ID and AST, report as mixed flora if not significant
Bacillus spp. (Not Anthrax)	Commensal, Potential pathogen	Pure	ID
Eikenella spp.	Commensal, Potential pathogen	Pure or predominant	ID, AST for deep tissue infections
Glucose non-fermenting Gram negatives	Commensal, Potential pathogen	Pure or predominant	ID and AST
Stenotrophomonas maltophilia	Commensal, Potential pathogen	Pure or predominant	ID and AST

Let's look at some examples.

Microbiology Culture Examples: Tissue biopsy from Diabetic foot ulcer

Gram Stain Result

Many PMNs GNRs, GPCs, Few Squamous Epis

Culture Result

2+ E. coli
2+ Enterococcus faecium
2+ Coagulase Negative
Staphylococci
2+ Streptococcus agalactiae (GBS)
2+ Finegoldia magna

Suggested Reporting

Mixed aerobic and anaerobic bacteria resembling intestinal flora including: 2+ E. coli 2+ E. faecium 2+ S. agalactiae

Susceptibility Testing

Performed Upon Request.

Microbiology Culture Examples: Tissue biopsy from Diabetic foot ulcer

Gram Stain Result

Many PMNs GNRs, GPCs, No Squamous Epis

Culture Result

4+ Enterococcus faecium

- 2+ P. aeruginosa
- 2+ Stenotrophomonas maltophilia
- 2+ Bacteroides fragilis group
- 2+ Parvimonas spp.

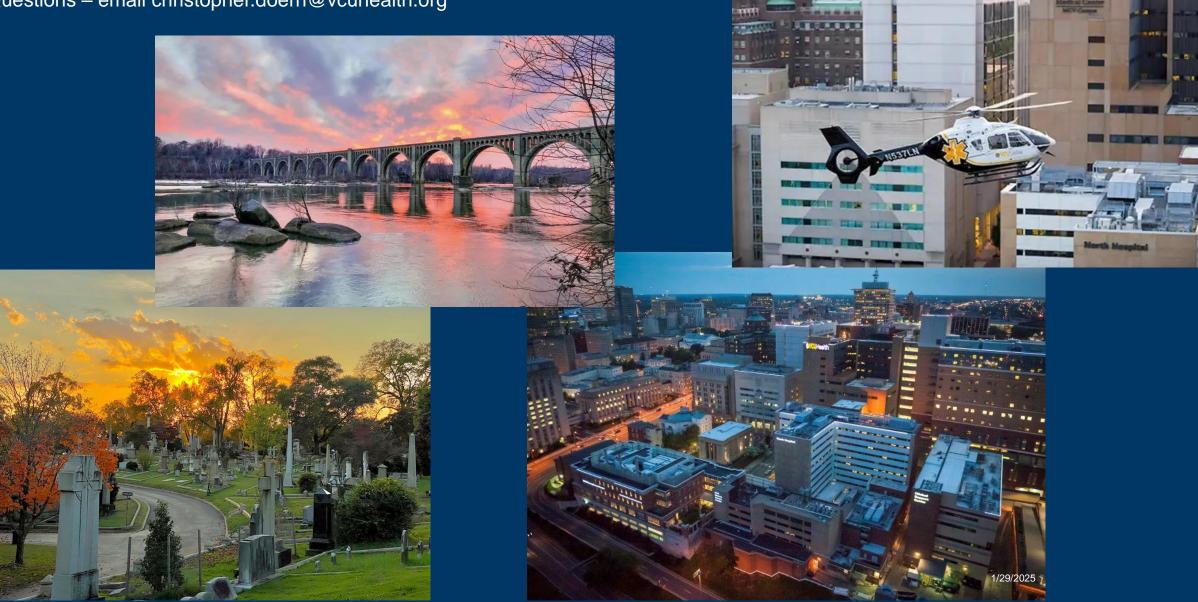
VCUHealth.

Suggested Reporting

4+ Enterococcus faecium
2+ P. aeruginosa
Mixed aerobic and anaerobic bacteria
including:
2+ Stenotrophomonas maltophilia
2+ Bacteroides fragilis group

Susceptibility Testing

Susceptibility testing performed on the *Enterococcus faecium* and *P. aeruginosa* as the principle pathogens.


Some last comments

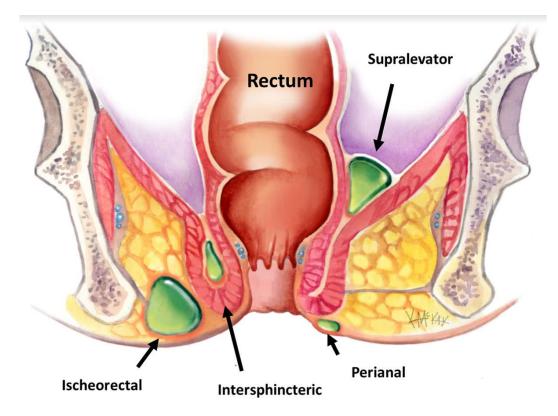
- Diabetic foot infections are often polymicrobic.
- Metagenomic analyses have shown that culture commonly fails to grow all organisms, especially obligate anaerobes.
- Cultures do not represent a complete picture of a patient's infection.
- Specimen quality can be variable and may be submitted from clinically unifected lesions.
- Excessive work-up of these cultures can lead to unnecessary antibiotic therapy.
- Per IDSA guidelines, empiric therapy should cover *P. aeruginosa* if present so laboratories should be sure to work-up any amount of this organism.
- Encourage thoughtful culture practice and optimal specimen types.

Thank you for your attention.

Questions – email christopher.doern@vcuhealth.org

TETTETTET

Bonus Material


Case

- A 56 year old otherwise healthy male presents with perianal swelling, pain and tendernous.
- Physical exam noted a small, erythematous, well-defined, subcutaneous mass near the anal orifice consistent with an anorectal abscess.
- Patient had a low-grade fever but all other vital signs were normal.
- An incision and drainage was performed and purulent material was collected and sent to the laboratory for aerobic and anaerobic bacterial culture.

Anorectal Abscesses

- The problem
 - Common complaint in the ED
 - Estimated 100,000 cases/year in US
 - Likely underestimate due to misdiagnosis as hemorrhoids.
 - If not diagnosed and treated can progress to "anal sepsis"
 - Can lead to a fistula in ~25% of patients.

Pathophysiology

ORIGINAL ARTICLE

Evaluation and management of perianal abscess and anal fistula: SICCR position statement

A. Amato¹ · C. Bottini² · P. De Nardi³ · P. Giamundo⁴ · A. Lauretta⁵ · A. Realis Luc⁶ · V. Piloni⁷

Statement: the treatment of anal abscess is surgical incision and drainage

Grade of recommendation: 1B

Statement: antibiotic therapy is unnecessary in uncomplicated anorectal abscess but can prevent fistula-in-ano after incision and drainage of simple anal abscess

Grade of recommendation: 1B

Antibiotic therapy for prevention of fistula in-ano after incision and drainage of simple perianal abscess: A randomized single blind clinical trial

Table II. Comparison of baseline and surgery related characteristics of patients based on fistula formation

	Fistula de	evelopment*		
Variable	Yes	No	Total	P value
Total no. (%) Group*	67 (22.3)	233 (77.7)	300 (100)	
1	22 (14.2)	133 (85.8)	155 (100)	<.001
2	45 (31.3)	99 (68.8)	144 (100)	

Cipro and Metronidazole Prophylaxis

Group 1 – Abx

Group 2 – No Abx

What does this mean for the value of culture?

Ghahramani et al. Surgery. 2017. 162(5)

JOURNAL OF CLINICAL MICROBIOLOGY, Nov. 1997, p. 2974–2976 0095-1137/97/\$04.00+0 Copyright © 1997, American Society for Microbiology

The Aerobic and Anaerobic Bacteriology of Perirectal Abscesses

ITZHAK BROOK* AND EDITH H. FRAZIER

Departments of Pediatrics and Infectious Diseases, Naval Medical Center, Bethesda, Maryland

Received 23 May 1997/Returned for modification 15 July 1997/Accepted 21 August 1997

TABLE 1. Aerobic and anaerobic organisms recovered in 144 perirectal abscesses

Drganism(s) ^a is								
Aerobic organisms								
Streptococcus								
α-Hemolytic	6							
γ-Hemolytic								
Group A.								
Group B								
Group D								
S. aureus								
Coagulase-negative staphylococci	6							
N. gonorrhoeae	2							
Proteus spp.								
Pseudomonas aeruginosa								
Other Pseudomonas species								
E. coli								
Klebsiella pneumoniae								
Enterobacter species	1							
Other gram-negative rods ^b	16							
Lactobacillus spp.	3							
Total								

TABLE	1.	Aerobic and	l anaerobic	organisms	recovered	in	144
perirectal abscesses							

Organism(s) ^a	No. of isolates
Anaerobic organisms	
P. magnus	11
P. anaerobius	
P. asaccharolyticus	
P. prevotii	6
P. saccharolyticus	1
P. micros	
Other Peptostreptococcus spp	
Streptococcus intermedius	2
Veillonella parvula	4
Veillonella alcalescens	2
Eubacterium lentum	
Other Eubacterium spp	
Propionibacterium acnes	2
Lactobacillus spp	
Clostridium perfringens	
Clostridium butyricum	
Other Clostridium species	10
Fusobacterium nucleatum	
Fusobacterium mortiferum	
Other Fusobacterium species	13
Bacteroides fragilis*	
Bacteroides distasonis*	4
Bacteroides ovatus*	
Bacteroides vulgatus*	
Bacteroides thetaiotaomicron*	11
Prevotella melaninogenica	
Prevotella intermedia	12
Prevotella oris-buccae	2
Prevotella ureolytica	
Prevotella oralis	2
Prevotella bivia	14
Prevotella disiens	6
Porphyromonas asaccharolytica	20
Other Bacteroides species	19
Total	325

^a Species marked with an asterisk all belong to the B. fragilis group.

^b Other gram-negative rods include Klebsiella spp. other than K. pneumoniae, Citrobacter spp., Providencia spp., Morganella spp., Acinetobacter spp., and Aeromonas spp.

Vol. 35, No. 11

Microbiology Culture Examples: Perirectal abscess material collected during I&D

Gram Stain Result

Many PMNs Moderate GNRs, GPCs, and GPRs Few Squamous Epis

Culture Result

2+ E. coli

- 2+ Enterococcus faecium
- 2+ Coagulase Negative Staphylococci
- 2+ Corynebacterium spp.
- 2+ Finegoldia magna

JHealth..

Suggested Reporting

Mixed aerobic and anaerobic bacteria resembling mixed intestinal and skin flora.

Comment: The presence of *S. aureus*, beta-hemolytic streptococci, *P. aeruginosa,* and significant growth of other pathogens has been ruled out.

Susceptibility Testing

Not performed.

Microbiology Culture Examples: Perirectal abscess material collected during I&D

Gram Stain Result

Many PMNs Moderate GNRs, GPCs, and GPRs Few Squamous Epis

Suggested Reporting

1+ S. aureus

Mixed aerobic bacteria resembling intestinal flora.

Culture Result

4+ E. coli3+ Enterococcus faecium1+ *S. aureus*

Susceptibility Testing

Perform on S. aureus.

Summary of Anorectal Culture Workup

- Expect intestinal flora It would be weird if it wasn't there.
- Don't overwork these cultures.
- Look for key pathogens and clear predominance of possible pathogens.

